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AN APPROXIMATION TO TEE EFFECT OF GEOMETRIC DIKEDRAL ON

THE ROLLING MOMENT DUE TO SIDEE!LIPFOR WINGS

AT TRANSONIC AND STJPERSONICSPEEDS

By Paul E. Purser

SUMMARY

A simple geometric relation has been found, by use of which the
effect of geometric dihedral on the rolling nmment due to sideslip at
transonic and supersonic speeds may be estimated for wings if either
the damping in roll or the rolling moment due to differential wing inci-
dence is known. No data are available for use in a direct check of the
proposed method at transonic speeds. Theoretical data are available,
however, for checks at supersonic speeds and experimental data are avail-
able for checking estimated ratios of damping in roll to rolling moment
due to differential wing incidence at transonic and supersonic speeds.
It is believed that these checks justify the use of the proposed
approximateion.

INTRODUCTION

A recent summary of methods for estimating lateral stability deriv-
atives (reference 1) calls attention to the lack of experimental data
at transonic and supersonic speeds for all derivatives except possibly
the damping in roll (or rolling moment due to rolling) (references 2 to 10.)

Linear-theory calculations are available for several derivatives
at supersonic speeds and, among these, references 11 and 12 treat the
effect of-geometric dihedral on the rolling moment due to sideslip for
narrow and wide triangular wings.

The present paper offers a simple geometric relation whereby the
existing information on damping in roll may be used to estimate the
effect of geometric dihedral on the rolling moment due to sideslip.
Values for the dihedral effect calculated from this approximation are
compared with existing linear-theory values.
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SYMBOLS

rolling-moment coefficient

()
&

rolling moment, pound-feet ~.1 ..~:L

-. .

-. ——
dynamic pressure

wing area, square

wing span, feet

.q pounds per square foot . .

s“ feet .. . ..-. --- ——.
.

=

:
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mass densi~ of air, slugs yer cubic foot—
.

velocity, feet per second

wing-tip helix angle, radians :-:

rate of roll, radians per second .

angle of sideslip, degrees
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differential wing incidence, degrees per half-wing

r dihedral angle, degrees per half-wing

x.

in plane normal to-half-wing for side-
—

angle of attack
slipping wing with dihedral, degrees (see”reference 13) .-
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numerical functions relating
I

%P r and Czi to Czp
w

METHOD
..

Basis

The basis for the proposed method of estimating the effect of dihe~”
dral on the rolling moment due to sideslip is that: .

(a) For a wing with dihedral, sideslip imposes a rectangular distri- .
Ibution of angle of attack over each half-wing and the angle of attack is
equal in magnitude but opposite in sign for the two half-wings as in the _
case of differential wing incidence (reference 13).

(b) For wings with differential incidence, reference 14 shows that

M
d=

a reasonable approximation to the rolling effectiveness v
diw

(

or the

%iw
ratio

T ) can be obtained from simple strip theory.

%/

(c) Therefore, the effect of dihedral on
sideslip should also be subject to reasonable
simple.strip theory provided one knows values

wing under consideration.

Derivation

Reference 14 gives the ratio of rolling
those due to differential wing incidence as:

the rolling moment due to
approximation by use of
of Cz

‘h
or Czp for the

moments due to rolling and

(1)

—

.-

-.

,---- ..-— —%



-.
——

.-
-+

.. .
.’

=

.-

—
mBw=ma% . NACA RM L52B01

=
4

but since ,,..-
.—

.-(2) “--

then

(Jl+2L~Cliw =-~ —
57.3 .1+ 3 4? = %p “- (3)

Reference.13 shows, that for wings with dihe&ral, the half-wing angle-of--
attack loading in sideslip is similar to that produced_bydifferential”
wing incidence. The magnitude of the angle-of-attackloadin”g”ii- .:..~ ,_ -~

.-. .

p sinr -(4)

or —

‘5) ,, . . ...,

then

.<

4

—

w~
.:..<.—.—-.-

(6) .
fC2P = c

diw

zi~ ~

and with the assumption that for small angles,

Czp = c
r

Zfw ~

From equations (3) and (7)

r
sin requals —

57*3
. . .-. —.

(7)

( )p l+2Ac rc~=—
~ 57.3 1+ 3L 7P 57.3

—.
(8)

.

.or

()!#=e_ U2&Czp = f2czp
(57.3)2 ~ + 3X

(9) —.
r“

—
w “.
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and equation (7) converts to

~=~
.

(lo)

where all angles except ‘$ are in degrees. —

The numerical functions fl and f2 in equations (3) and (9) are -

plotted against taper ratio X in figure 1.

DISCUSSION

onic
There appears to be no experimental-information available atitrans-
and supersonic speeds to allow a check of equations (9) and (10).

dcz
Equation (3) for calculating — , however, is considered to be adequately

d%
Czp

checked by the experimental ~ta presented in reference 14. Values of
calculated from linear theory for triangular wings at supersonic speeds

C2
are given in reference 12 “andthe linear-theory values of

-+ for rec-
tangular wings at supersonic speeds were obtained as a Mniting case
(differential deflection of full-span full-chord flaps or differential
wing incidence) from reference 15. These theoretical results are shownb
in figure 2 along with values calculated from equation (9) by using Czp

from linear theory and also using experimental data for C2 of thin.* P
wings from reference 10. In general, the agreement between linear theory
and the present approximation is fairly good for either theory or experi-
ment for Cz . The agreement between values of C

P /
2p r calculated from

theoretical and experimental values of c2P is simply a reflection of

the agreement between theory and experiment for C2 of thin wings.
P

c2iw
The agreement of the present approximations with experiment for —

!#
c2p

and with supersonic linear theory for are felt to be sufficiently

good to justify the use of equations (9) and (10). .

Although not generally applicable nor intended for use at subsonic
. speeds, it is interesting to note that the use of equation (9) does check

fairly-well with theory for the particular case of the narrow triangle

-d’

,=c~
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(reference 11). This comparison is esseratia>lya comparison of the
slopes through zero of the two curves in fig&e 2(a).
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Figure 1.- Variation with taper ratio of the functions relating C~,
-J-w
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—Linear theory,references12 and 15
—.— Equation(9)and linear theory CZn

A Q EqUation(9)andexperimental CL= from reference 10
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of linear theory and present approxtiation for effect v
dihedral on rolling moment due to sideslip. .-
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